>
SpaceX Starship About Nine Days From Next Launch
Air-powered robot uses physics instead of circuits to run on tube-legs
Musk Promised Budget Cuts, But Stole All Our Data And Delivered A Panopticon Instead
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
Now one such state, first proposed almost 50 years ago, has been created in experiments for the first time. Say hello to the supersolid, a state where atoms simultaneously exhibit a crystalline structure but still flow like a frictionless fluid.
The concept of a supersolid arose from the Nobel Prize-winning discovery in the 1970s of a superfluid, a liquid that has zero viscosity, meaning it flows with no resistance or "thickness." At the time, British physicist David Thouless theorized that a state of matter could exist where atoms are both free flowing like a superfluid, but also arranged in a crystalline structure, making it a supersolid.
Earlier attempts to produce this state used helium, the element that first exhibited superfluidity, but it was never brought to fruition. Now, two simultaneous – but independent – studies, one from ETH Zurich and one from MIT, have produced supersolids from Bose-Einstein condensates, using two different techniques.