>
"We Have To Respond With Force & Strength. We Have To Be Vicious, Just Like They Are":
US Air Force's first official autonomous combat drone takes to the air
Cracker Barrel suspends all restaurant remodels after disastrous rebrand controversy
The moment Israel bombs Hamas leaders as they discuss Trump's Gaza ceasefire deal in Qatar:
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
But the implanted electrodes used in such trials eventually become useless, as scar tissue forms that degrades their electrical connection to brain cells
Next month, tests will begin in monkeys of a new implant for piping data into the brain that is designed to avoid that problem. The project is intended to lead to devices that can restore vision to blind people long-term.
Researchers at Harvard Medical School will use a new kind of implant that will go beneath the skull but can rest on the surface of an animal's brain, instead of penetrating inside the organ. An array of microscopic coils inside the hair-like device can generate powerful, highly targeted magnetic fields to induce electrical activity at particular locations in the brain tissue underneath. The implant will also be tested when placed inside brain tissue.