>
Can Tulsi Defeat The Deep State?
Decentralize TV: Jim Gale and Rob Younkins on FOOD INDEPENDENCE through food forests
Life's blueprint TWISTS UNDER PRESSURE – a new discovery about DNA...
Mozzarella unwrapped: History, health benefits and culinary versatility of this iconic cheese
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
In an apparent contradiction to textbook physics, a metal has been identified that conducts electricity but produces almost no heat in the process. Such a strange property may be expected to occur in conductors operating at cryogenic temperatures, but a team of researchers led by the Lawrence Berkeley National Laboratory claims to have discovered this unique property in vanadium dioxide at temperatures of around 67 °C (153 °F).
Of all the metals found on Earth, most are both good conductors of heat and electricity. This is because classic physics dictates that their electrons are responsible for both the movement of electrical current and the transfer of heat. This correlation between electrical and thermal conductivity is dictated by the Wiedemann-Franz Law, which basically says that metals that conduct electricity well are also good conductors of heat.
However, metallic vanadium dioxide (VO2) seems to be different. When the researchers passed an electrical current through nanoscale rods of single-crystal VO2, and thermal conductivity was measured, the heat produced by electron movement was actually ten times less than that predicted by calculations of the Wiedemann-Franz Law.
"This was a totally unexpected finding," said Professor Junqiao Wu, a physicist at Berkeley Lab's Materials Sciences Division. "It shows a drastic breakdown of a textbook law that has been known to be robust for conventional conductors. This discovery is of fundamental importance for understanding the basic electronic behavior of novel conductors."
And what a novel conductor VO2 is.
When heated to 67 °C (153 °F), vanadium dioxide undergoes an abrupt transition from an insulator to a conductor, as its crystal structure transforms. This structural alignment of VO2 into a metal provides clues as to why the material is able to transfer electrical current with negligible heating.