>
Epstein Client List BOMBSHELL, Musk's 'America Party' & Tucker's Iran Interview | PB
The Hidden Cost of Union Power: Rich Contracts and Layoffs Down the Road
Do They Deserve It? Mexico Is Collapsing As The US Deports Illegals Back Home
Copper Soars To Record High As Trump Unleashes 50% Tariff
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
Experimental and theoretical research has shown 'spherical' tokamaks to be a "fast route to fusion" compared with more "conventional" tokamak devices such as Joint European Torus (JET), according to David Kingham, chief executive of Tokamak Energy.
"By pursuing this route, fusion researchers around the world, including at Tokamak Energy, are developing new materials and technologies to help us get fusion power into the grid by 2030," Kingham told a meeting held last week by the International Energy Agency (IEA) on developing fusion power. Tokamak Energy was invited as "one of the three most promising fusion concepts", along with General Fusion and Tri-Alpha Energy.
The UK's Tokamak Energy grew out of Culham Laboratory, home to JET - the world's most powerful tokamak - and the world's leading centre for magnetic fusion energy research. Tokamak Energy's technology revolves around high temperature superconducting (HTS) magnets, which allow for relatively low-power and small-size devices, but high performance and potentially widespread commercial deployment.