>
Can Tulsi Defeat The Deep State?
Decentralize TV: Jim Gale and Rob Younkins on FOOD INDEPENDENCE through food forests
Life's blueprint TWISTS UNDER PRESSURE – a new discovery about DNA...
Mozzarella unwrapped: History, health benefits and culinary versatility of this iconic cheese
NVIDIA just announced the T5000 robot brain microprocessor that can power TERMINATORS
Two-story family home was 3D-printed in just 18 hours
This Hypersonic Space Plane Will Fly From London to N.Y.C. in an Hour
Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery
There are studies that have shown that there is a peptide that can completely regenerate nerves
Swedish startup unveils Starlink alternative - that Musk can't switch off
Video Games At 30,000 Feet? Starlink's Airline Rollout Is Making It Reality
Automating Pregnancy through Robot Surrogates
Grok 4 Vending Machine Win, Stealth Grok 4 coding Leading to Possible AGI with Grok 5
Back in 1935, scientists predicted that hydrogen could be transformed into a metal under immense amounts of pressure, similar to the way carbon atoms can form into diamonds. Back then it was thought that 25 gigapascals (about 250,000 times normal atmospheric pressure on Earth) should do the trick.
Harvard physicists Ranga Dias and Isaac F. Silvera say they had to find a way to subject hydrogen to nearly twenty times that much pressure, which is more intense than the pressure at the center of the Earth, before it finally underwent the transition that had been predicted over eighty years ago.
"This is the holy grail of high-pressure physics," Silvera said. "It's the first-ever sample of metallic hydrogen on Earth, so when you're looking at it, you're looking at something that's never existed before."