>
Epstein Client List BOMBSHELL, Musk's 'America Party' & Tucker's Iran Interview | PB
The Hidden Cost of Union Power: Rich Contracts and Layoffs Down the Road
Do They Deserve It? Mexico Is Collapsing As The US Deports Illegals Back Home
Copper Soars To Record High As Trump Unleashes 50% Tariff
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
"Despite attractive mechanical and electrical properties, CNTs have largely been a disappointment for 'real-world' applications, because it has not been possible to make them in formats that are useful for engineers," explains Peter Antoinette, co-founder and president of Nanocomp Technologies Inc. (Merrimack, N.H.; www.nanocomptech.com), the developer of the process. Short CNTs do not readily form networks within other materials, unless used at very high concentrations.
The Nanocomp process revolves around a proprietary 1-m long heated reactor (photo) that contains a widely available iron catalyst and allows control of 23 separate process variables. Organic alcohols serve as the carbon source for CNTs. "By exerting tight control over the process conditions, we can manipulate the length and dimensions of the CNTs," Antoinette says. The longer, polymer-like CNTs resulting from the process are commercially available as Miralon products, and they can be spun into "yarn" using equipment for textile fiber processing. Because of their length, the Nanocomp CNTs form bundles and networks that allow them to be more useful in macroscale materials, such as for lightweight structural materials.