>
DARWIN'S REVENGE: Vaccine advocates are eliminating themselves (and their children)...
Secret comms devices, radios, hidden in solar inverters from China. Would you like a Blackout...
Teaching The Autism Community Trades | Episode 2 | People You Should Know
Brighteon Broadcast News, May 16, 2025 – OVERDUE – Arrest the traitors already! And 86 the COVID
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
The rise of quantum computing may be as important a shift as John von Neumann's stored program-and-data concept.
Here are some of the scientists and breakthroughs that will enable this shift.
Robert Schoelkopf (Yale, Quantum Circuits inc) claims a number of "world's firsts," the latest of which is the longest "coherence time" for a quantum superposition.
Multilayer microwave integrated quantum circuit (left) uses silicon wafers with features etched using MEMS techniques to create enclosures that serve as high-Q resonators as well as providing shielding. Superconducting metalization (blue) covers the walls of these enclosures to provide low-loss wafer-to-wafer bonding. A cross-section of the rectangular cavity resonator (upper right) shows interlayer aperture coupling between the cavity and transmission lines above. 3D superconducting transmission lines (lower right) could be constructed using membranes (green) in the MEMS structure where qubits and act as a compact low-loss quantum bus.
(Source: Yale)