>
Brand New Solar Battery With THIS Amazing Feature! EG4 314Ah Wall Mount Review
This New Forecast Just Got WAY Worse...
S3E4: The Freedom Movement Funded Its Own Prison
Dan Bongino Gets DESTROYED By Dave Smith & Ducks Debate!
The day of the tactical laser weapon arrives
'ELITE': The Palantir App ICE Uses to Find Neighborhoods to Raid
Solar Just Took a Huge Leap Forward!- CallSun 215 Anti Shade Panel
XAI Grok 4.20 and OpenAI GPT 5.2 Are Solving Significant Previously Unsolved Math Proofs
Watch: World's fastest drone hits 408 mph to reclaim speed record
Ukrainian robot soldier holds off Russian forces by itself in six-week battle
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury

The rise of quantum computing may be as important a shift as John von Neumann's stored program-and-data concept.
Here are some of the scientists and breakthroughs that will enable this shift.
Robert Schoelkopf (Yale, Quantum Circuits inc) claims a number of "world's firsts," the latest of which is the longest "coherence time" for a quantum superposition.
Multilayer microwave integrated quantum circuit (left) uses silicon wafers with features etched using MEMS techniques to create enclosures that serve as high-Q resonators as well as providing shielding. Superconducting metalization (blue) covers the walls of these enclosures to provide low-loss wafer-to-wafer bonding. A cross-section of the rectangular cavity resonator (upper right) shows interlayer aperture coupling between the cavity and transmission lines above. 3D superconducting transmission lines (lower right) could be constructed using membranes (green) in the MEMS structure where qubits and act as a compact low-loss quantum bus.
(Source: Yale)