>
Is Peter Thiel the NEW Jeffrey Epstein?! Discover His Links and Similarities to Epstein
The Tip of the Iceberg: Israel. The Historical Role of The Rothschilds
The Wearables Trap: How the Government Plans to Monitor, Score, and Control You
The Streetwing: a flying car for true adventure seekers
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Researchers at Tokai University have created materials obtained by bringing n-alkanes into contact with graphite which are capable of conducting electricity with almost no energy loss at room temperature. They report that the sudden jump in resistance showing a phase transition is observed in the materials during heating by two-probe resistance measurement. The measured critical temperatures of the materials consisting of pitch-based graphite fibers and n-alkanes having 7-16 carbon atoms range from 363.08 to 504.24 K (231 Celsius) and the transition widths range between 0.15 and 3.01 K. They also demonstrate that superconductors with critical temperatures beyond 504 K (231 Celsius) are obtained by alkanes with 16 or more carbon atoms.
In 1986, a cuprate superconductor (Ba-La-Cu-O system) having a critical temperature which goes over the BCS limit (~30 K) was discovered and then a cuprate superconductor (Y-Ba-Cu-O system) with a critical temperature higher than 77 K was discovered. Furthermore, a Hg-based cuprate with a critical temperature of 133 K was found. The 133 K is still the highest critical temperature of conventional superconductors under atmospheric pressure