>
Rep. Burchett to Introduce Legislation to Codify President Trump's America First Agenda into Law
DARWIN'S REVENGE: Vaccine advocates are eliminating themselves (and their children)...
Secret comms devices, radios, hidden in solar inverters from China. Would you like a Blackout...
Teaching The Autism Community Trades | Episode 2 | People You Should Know
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
A team at Rice University has used nitrogen-doped graphene quantum dots (NGQDs) as a catalyst in electrochemical reactions that create ethylene and ethanol, and the stability and efficiency of the material is close to that of common electrocatalysts like copper.
Reducing the amount of carbon dioxide that enters the atmosphere is one weapon in the fight to slow climate change, and plenty of research is looking into how we can capture carbon at the source, using clay, engineered bacteria, metal-organic frameworks or materials like the "Memzyme," and sequester it into rock and concrete. Other studies are focusing on how we can convert that captured carbon into liquid hydrocarbons, which can then be used as fuel.