>
Charlie Kirk Was Just Shot and Killed
The Fear-Mongering Rackets of the US National-Security State
Gen-Z flexes new-age political muscle in Nepal
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
The system – which wirelessly transmits decoded brain signals to stimulate the muscles responsible for leg movement – represents the first time a neural prosthetic has restored locomotion in a primate.
While the brain-spinal interface has only been tested on macaques so far, the team behind the research says one day the technology could help restore the ability to walk in humans paralysed by spinal cord injuries.
"The system we have developed uses signals recorded from the motor cortex of the brain to trigger coordinated electrical stimulation of nerves in the spine that are responsible for locomotion," says engineer David Borton from Brown University.
"With the system turned on, the animals in our study had nearly normal locomotion."