>
The Pentagon Failed Its Audit Again. You Should Be Alarmed.
Cuban Crisis 2.0. What if 'Gerans' flew from Cuba?
Senate Democrats Offer Promising Ideas for Changing Immigration Enforcement
Never Seen Risk Like This Before in My Career
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries
Lab–grown LIFE takes a major step forward – as scientists use AI to create a virus never seen be
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Donut Lab Says It Cracked Solid-State Batteries. Experts Have Questions.

Now, researchers at the University of Cambridge have turned to biology – to cells that line the human intestine – for inspiration in designing next-generation batteries. It's a big step forward for lithium-sulphur batteries, but it'll likely still be years before the tech becomes commercially available.
Lithium-sulphur battery technology has a lot of potential – it could provide as much as five times the energy density of lithium-ion solutions used today. But batteries made using the materials tend to be short-lived, with active material being lost during the repeated charge-discharge cycle. A Cambridge team believes it's now solved the issue, by adding a thin layer of material to the setup.
But taking a step back – what makes lithium-sulphur battery tech so appealing in the first place?