>
FDA Chief Says No Solid Evidence Supporting Hepatitis B Vaccine At Birth
Evergreen, Colorado: Another Killing Zone in America
Trump Cryptically Writes "Here We Go!" In Reaction To Russia-Poland Drone Incident, Oil Sp
Qatar Says It Reserves Right To Retaliate Against 'Barbaric' Netanyahu
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Because scientists would have to basically reproduce the conditions at the core of the sun to bring this atom-mashing technology to fruition though, it's been a bit slow to evolve. Researchers at MIT however, have just passed an important milestone on the long path to a fusion future, placing plasma under what they say is the most pressure ever created in a fusion device.
In nuclear fusion, the nuclei of atoms are basically forced to join together despite their natural repellency. When they fuse, they release a tremendous amount of energy. How much? Well, it's the process that keeps our sun churning, where molecules of hydrogen are fused together in its core to create helium.
To recreate controlled nuclear fusion on Earth (unlike the uncontrolled version involved in a hydrogen bomb), gas is first heated to super-hot temperatures to form plasma. The plasma is simultaneously placed under intense pressure with the goal of keeping it stable, and is contained by an electromagnetic field.