>
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
I wish I was taught Einstein's Special Relativity this way!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
Known as luminescent solar concentrators (LSC), these devices so far haven't proven as efficient or scalable as regular panels, but now a team at Los Alamos National Laboratory has demonstrated a new technique that could make for larger, more practical solar energy-harvesting windows.
The key to LSCs are molecules known as flurophores embedded within the glass surface, which absorb the light that hits them and re-emit it as lower energy photons. These photons are then guided to the edges of the surface, where strips of conventional PV cells lie in wait to catch them. Over the years, the technology has advanced from visibly studded sphelar cells, to semi-transparent tinted windows, right up to fully transparent planes of energy-producing glass.
The problem is, aesthetically and practically, clear glass would be ideal. Yet those devices can lack in the efficiency department, converting just one percent of the solar energy received.