>
How Wall Street & the FBI Colluded to Destroy Trevor Milton After His Tech Threatened Big Oil
Moderna Founder Launches Aerial-Spraying of RNA 'Plant Vaccines' to Alter Gene Expression of
'Horrifying': RFK Exposes Hospitals Procuring Organs from Patients Despite Showing Signs of
DHS Committee Confirms Biden Deliberately Was Trafficking Thousands Of Children For Sex Slavery!!
The Wearables Trap: How the Government Plans to Monitor, Score, and Control You
The Streetwing: a flying car for true adventure seekers
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
If you're building an ultra-sensitive space telescope, for instance, you want to minimize reflections within that device as much as humanly possible. That's why Surrey NanoSystems released its Vantablack coating two years ago. Now, in order to expand its possible applications, the material is available in a convenient spray-on form.
The conventional form of Vantablack is made up of a forest of light-absorbing carbon nanotubes, and is applied to surfaces via a chemical vapour deposition process. Once in place, it traps 99.965 percent of incoming light – that's enough to make three-dimensional objects which are coated in it appear as two-dimensional voids, across a wide range of viewing angles.
The new version, known as Vantablack S-VIS, is almost as good – it traps 99.8 percent of ultraviolet, visible and infrared light. According to Surrey Nanosystems, that's 17 times less reflective than the super-black paint used in the Hubble telescope.