>
How Wall Street & the FBI Colluded to Destroy Trevor Milton After His Tech Threatened Big Oil
Moderna Founder Launches Aerial-Spraying of RNA 'Plant Vaccines' to Alter Gene Expression of
'Horrifying': RFK Exposes Hospitals Procuring Organs from Patients Despite Showing Signs of
DHS Committee Confirms Biden Deliberately Was Trafficking Thousands Of Children For Sex Slavery!!
The Wearables Trap: How the Government Plans to Monitor, Score, and Control You
The Streetwing: a flying car for true adventure seekers
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Last year we saw researchers adapt these lightweight materials to stop various forms of radiation in their tracks, and now the same team has ramped things up to offer protection from something with a bit more force: an armour-piercing bullet, which was turned to dust on impact.
In its most simple form, foam metal is made by bubbling gas through molten metal to form a frothy mixture which then sets as a lightweight matrix. This leaves a material that offers a lighter alternative to conventional metals, while still maintaining a comparable strength.
Afsaneh Rabiei, a professor of mechanical and aerospace engineering at North Carolina State University, last year produced a foam metal shield that could block X-rays, various forms of gamma rays and neutron radiation, giving it potential as a lightweight alternative to the bulky radiation shielding currently available.