>
GM's LMR battery breakthrough means more range at a lower cost
CPI Better than Expected Thanks to a Drop in the Price of Food
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
Now, Korean scientists have developed a material that mimics the sucker discs on those tentacles. It could be used for adhesive pads that are reversible, reusable, fast-acting, and effective even in wet conditions.
A real octopus sucker disc has a hollow cavity in the middle, surrounded by a ring of muscle tissue. The size of the cavity is controlled by the octopus making that tissue thicker or thinner – the thinner the muscle tissue, the larger the cavity, and the lower the air pressure within it. A larger cavity creates more suction, while a smaller one causes the disc to release.
The scientists, from the Korea Institute of Science and Technology (KIST) and Ulsan National Institute of Science and Technology (UNIST), made their pad using rubbery polydimethylsiloxane (PDMS) studded with an array of tiny pores. Each of those pores is lined with a thermally-responsive polymer.