>
"World's most power dense" electric motor obliterates the field
Robot metabolism: The next evolution of our overlords?
Trump's $1 trillion AI data center boom strains Texas grid -- nuclear power eyed as solution
OpenAI ChatGPT Agent for Tool Use, Shopping and Other Activity
The Wearables Trap: How the Government Plans to Monitor, Score, and Control You
The Streetwing: a flying car for true adventure seekers
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
After all, this is where fresh water comes from naturally as part of the planet's water cycle—the Sun. Heat yields water vapor, water vapor yields water rain. Fresh-water rain.
Surely we can harness that.
Well, we do actually harness solar energy for desalination purposes through a variety of different schemes, at least one of which has been commercialized. Yet the method remains inefficient relative to other desalination methods, costing between $1.52 and $2.05 per cubic meter of water produced, according to the World Bank. To truly scale, solar desalination will have to be in line with other, dirtier (read: fossil fuel-dependent) desalination methods, which currently cost about half that.
Engineers from Georgia Institute of Technology and Nanjing University have developed a new solar desalination process based on self-assembling nanoparticle membranes. Crucially, the technology is based on low-cost, abundant materials (aluminum, mainly) that remain stable after many uses and can be fabricated with very low overhead. The group's work is described in this week's edition of Nature Photonics.