>
Importing Poverty into America: Devolving Our Nation into Stupid
Grand Theft World Podcast 273 | Goys 'R U.S. with Guest Rob Dew
Anchorage was the Receipt: Europe is Paying the Price… and Knows it.
The Slow Epstein Earthquake: The Rupture Between the People and the Elites
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

For the first time, scientists have pinpointed the mechanism used by the amphibian to regrow missing body parts, a development they say will offer clues to muscle regeneration in mammals.
A team of scientists from the University of Tsukuba, Japan, and the University of Dayton, Ohio, set out to investigate the role of two types of cells believed to play a key role in a newt's muscle regeneration: skeletal muscle fiber cells (SMFCs) and muscle stem/progenitor cells (MPCs). MPCs are dormant cells that live in the muscle fiber and can be recruited to multiply into specialized muscle cells.
The researchers added a gene to Japanese fire bellied newt embryos that was linked to a red fluorescent protein and known to be active in SMFCs, allowing them to track its activity throughout the muscle regeneration process. MPC activity was assessed through tissue sample collection and cell-specific staining.