>
Importing Poverty into America: Devolving Our Nation into Stupid
Grand Theft World Podcast 273 | Goys 'R U.S. with Guest Rob Dew
Anchorage was the Receipt: Europe is Paying the Price… and Knows it.
The Slow Epstein Earthquake: The Rupture Between the People and the Elites
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

Because the demand for donors' organs and tissues is so high, researchers have spent years engineering synthetic tissues that could be transplanted into humans. But that's not very easy to do—many of the gel-like tissues have been too mushy to be moved into a living organism, and without the intricate pathways in the tissue through which oxygen and other nutrients can travel, the living cells inside don't survive long.
Now a team of researchers from Wake Forest University has created a 3D bioprinting tool that creates large synthetic bone, cartilage, and muscle tissue that is viable for weeks or months at a time when implanted in animals. With a bit more work, the researchers believe these 3D printed tissues could be transplanted into humans, according to a study published today in Nature Biotechology.