>
Trump, Treason, and the New York Times
Democrat idiocy at work in San Francisco
BREAKING THROUGH Tesla AI in 2026
Who Was The Biggest Antisemite In 2025?
Laser weapons go mobile on US Army small vehicles
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...

In the wake of a Hong Kong fraud case that saw an employee transfer US$25 million in funds to five bank accounts after a virtual meeting with what turned out to be audio-video deepfakes of senior management, the biometrics and digital identity world is on high alert, and the threats are growing more sophisticated by the day.
A blog post by Chenta Lee, chief architect of threat intelligence at IBM Security, breaks down how researchers from IBM X-Force successfully intercepted and covertly hijacked a live conversation by using LLM to understand the conversation and manipulate it for malicious purposes – without the speakers knowing it was happening.
"Alarmingly," writes Lee, "it was fairly easy to construct this highly intrusive capability, creating a significant concern about its use by an attacker driven by monetary incentives and limited to no lawful boundary."
Hack used a mix of AI technologies and a focus on keywords
By combining large language models (LLM), speech-to-text, text-to-speech and voice cloning tactics, X-Force was able to dynamically modify the context and content of a live phone conversation. The method eschewed the use of generative AI to create a whole fake voice and focused instead on replacing keywords in context – for example, masking a spoken real bank account number with an AI-generated one. Tactics can be deployed through a number of vectors, such as malware or compromised VOIP services. A three second audio sample is enough to create a convincing voice clone, and the LLM takes care of parsing and semantics.