>
Dubai: cryptocurrency payments for government services thanks to Crypto.com
Shocking UFO files hidden in presidential library claim US made successful contact with an alien...
Southern state residents 'desperate to escape' but homes won't sell as crash looms
Trump blasts hysteria over Qatar's $400M gift: 'We're the USA'
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
This could be big for the development of new sensors and quantum devices. Ultrafast electron microscope (UEM) at Argonne's Center for Nanoscale Materials (CNM) enables the visualization and investigation of phenomena at the nanoscale and on time frames of less than a trillionth of a second.
When gold nanoparticle sat on a flat sheet of graphene, the plasmonic field was symmetric. But when the gold nanoparticle was positioned close to a graphene edge, the plasmonic field concentrated much more strongly near the edge region.
A paper based on the study, ?"Visualization of plasmonic couplings using ultrafast electron microscopy," appeared in the June 21 edition of Nano Letters.
Nanoletters – Visualization of Plasmonic Couplings Using Ultrafast Electron Microscopy