>
FICO Stock Down More Than 10% This Week After FHFA Opens Door To VantageScore For Mortgages
It's Time To End The 'Deep State' Fed
Hamas Willing To Release 10 Hostages, But Israel Wants Total Disarmament
Deep Dive Into Android: How GrapheneOS Is Locked Out
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
Joseph Makin at the University of California, San Francisco, and his colleagues used deep learning algorithms to study the brain signals of four women as they spoke. The women, who all have epilepsy, already had electrodes attached to their brains to monitor seizures.
Each woman was asked to read aloud from a set of sentences as the team measured brain activity. The largest group of sentences contained 250 unique words.
The team fed this brain activity to a neural network algorithm, training it to identify regularly occurring patterns that could be linked to repeated aspects of speech, such as vowels or consonants. These patterns were then fed to a second neural network, which tried to turn them into words to form a sentence.
Each woman repeated the sentences at least twice, and the final repetition didn't form part of the training data, allowing the researchers to test the system.
Each time a person speaks the same sentence, the brain activity associated will be similar but not identical. "Memorising the brain activity of these sentences wouldn't help, so the network instead has to learn what's similar about them so that it can generalise to this final example," says Makin. Across the four women, the AI's best performance was an average translation error rate of 3 per cent.