>
Networks Versus Hierarchies in Minneapolis' Struggle Against ICE
Billionaire Reid Hoffman, Who Bankrolled the E. Jean Carroll Lawsuit Against Trump,...
Hybrid jet engines work to excel where pure-electric jets fail
This Could Completely Change the Way You Grade
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries
Lab–grown LIFE takes a major step forward – as scientists use AI to create a virus never seen be
New Electric 'Donut Motor' Makes 856 HP but Weighs Just 88 Pounds
Donut Lab Says It Cracked Solid-State Batteries. Experts Have Questions.

But one of the questions that we believe keep potential buyers up at night, surrounds their battery packs. So we've compiled a list of all the questions we've received, and we're going to break it down, step by step in this two part video series.
First we'll look at the raw materials required to create lithium ion batteries. Second we'll look at the battery cell manufacturing. In part 2, we'll look at the complete battery pack manufacturing, the final Car manufacturing, and end of life recycling of lithium ion batteries.
Different car makers use different cathode chemistries for lithium ion batteries, Tesla uses NCA chemistry, or Nickel, Cobalt, and Aluminium (LiNiCoAlO2). They use this particular chemistry because it offers great energy density, long cycle life, and great charge performance. This makes Tesla's batteries the absolute top of the line in the EV world. They weigh less, last longer, and power the performance of things like Ludicrous mode.